Category Archives: Projects

Arduino Nano Battery Tester: Soldering Timelapse

This is a continuation of the previous project video “How To Build A Battery Tester” https://goo.gl/4k612V where we take an Arduino Nano and a few other electronic parts to build a AA battery tester that will give us fairly accurate “real world” readings on NiMH batteries. This little device will come in handy for the next project on the list, so be sure to subscribe for more how-tos!

Do you have some rechargeable batteries lying around that need a capacity check? Let’s put together an Arduino-powered Battery Tester so we can verify the listed capacity of these cells!

Parts and Tools (affiliate links):
Helping hands: http://amzn.to/2vkDUyY
Soldering iron/station: http://amzn.to/2vkzqbH
Lead-free solder: http://amzn.to/2fuuawR
16 AWG Speaker wire: http://amzn.to/2vniSyh
AA battery holder: http://amzn.to/2eHNEOa
Terminal blocks: http://amzn.to/2uq1IRD
1R10W Ceramic Resistor: http://amzn.to/2eHKk5H
Arduino Nano (clone): http://amzn.to/2uQAd4Z
1.5R10W Power Resistor: http://amzn.to/2eIieHc
IRF3205 MOSFET: http://amzn.to/2eInMBG
10KR Resistor: http://amzn.to/2uPLjXQ
Nokia 5110 Screen: http://amzn.to/2eHS0VC

–Be sure to subscribe! https://goo.gl/j3ATwZ
–Follow on Twitter http://twitter.com/airbornesurfer
–LIVE every Thu @ 5pm Pacific
–Everything else is at http://airbornesurfer.com

Tech teardowns, repairs, and reviews; sketches; how-to; games; and lots of other interesting geekery. At least one new video per month! Thanks for watching, and be sure to like, share, and subscribe!

Someone Is Photobombing My Video Shoot

How To Build A Battery Tester

Do you have some rechargeable batteries lying around that need a capacity check? Today, we’ll take an Arduino Nano and a few other electronic parts to build a AA battery tester that will give us fairly accurate “real world” readings on NiMH batteries. This little device will come in handy for the next project on the list, so be sure to subscribe for more how-tos!

How To Install The Correct Arduino Nano Driver https://goo.gl/zWB4BD

Parts List (Affiliate links):
Breadboard & jumpers: http://amzn.to/2uq6KNW
AA battery holder: http://amzn.to/2eHNEOa
Terminal blocks: http://amzn.to/2uq1IRD
1R10W Ceramic Resistor: http://amzn.to/2eHKk5H
Arduino Nano (clone): http://amzn.to/2uQAd4Z
1.5R10W Power Resistor: http://amzn.to/2eIieHc
IRF3205 MOSFET: http://amzn.to/2eInMBG
10KR Resistor: http://amzn.to/2uPLjXQ
Nokia 5110 Screen: http://amzn.to/2eHS0VC

Original concept and Arduino sketch by Adam Welch https://goo.gl/eN85W9

Music: “Robots R Us Remix” by Anders Enger Jensen
https://goo.gl/KEEzoY

–Check out more videos here
https://goo.gl/z7QLov

–Be sure to subscribe!
https://goo.gl/j3ATwZ

–Follow on Twitter
https://goo.gl/vfstFm

–Everything else is at
http://airbornesurfer.com

Production videos on Mondays (when available)
Freeway Forum replays every Wednesday

Tech teardowns, repairs, and reviews; sketches; how-to; games; and lots of other interesting geekery. Thanks for watching, and be sure to like, share, and subscribe!

Continue reading How To Build A Battery Tester

How To Install The Correct Arduino Nano Driver

The Arduino Nano is a fantastic little device that can do a wide variety of things. It is also, like it’s bigger sisters, a target for cheap clones which perform similar range of functions with cheaper parts. While I’m not opposed to this, per se, especially in the education and prototyping spheres, the lack of documentation on these devices can make the initial experience somewhat frustrating. When I first began working with Arduino, I couldn’t–for the life of me–find out how to install the correct Arduino Nano driver for my Mac. The genuine Arduino uses the FTDI USB-to-serial chip which is fairly easy to source and comes with sufficient documentation, but the microcontrollers I bought off eBay use a different chipset to handle the data conversion.

How To Install The Correct Arduino Nano Driver
Location of USB-Serial conversion chip

To install the correct Arduino Nano driver, one must first locate the USB-serial conversion chip. This will be located on the bottom of the device, close to the USB port itself.

The chip will have its designation printed on it. A little white-belt Google Fu will get you to the correct drivers. In this case, it was not the FTDI chip, but the CH340 handling the conversion. This generally works for Windows and even Linux machines, but to compound the issue of using a CH34x chip with a Mac is that there really isn’t an “official” driver for the OS. On Mac, you’re really going to need MPParsley’s driver from GitHub as the drivers from the manufacturer will actually cause a kernel panic on MacOS (you know, Sierra/10.12+). It’s a fairly simple matter of downloading the package file, installing the package, then rebooting.

If, for some reason, you managed to install the wrong drivers on your Mac, the GitHub article also has instructions on how to remove the broken driver. It’s a pretty simple matter of using Terminal to remove the offending entries in the Library folders, much like one would do on a Linux machine.

How To Install Essential Upgrades To Your ROBO 3D Printer

Make your 3D printer into a wireless print server by adding a Raspberry Pi and capture timelapse videos with an on-board webcam. What do you want to see me print next?

How To Install OctoPi http://airbornesurfer.com/2017/06/setup-octopi-raspberry-pi-octoprint/

AFFILIATE LINKS:
LED Lighting http://amzn.to/2rBwaZs
The Simpsons http://amzn.to/2sIXSTX
The Lord of the Rings http://amzn.to/2tcMk8w
Jurassic Park http://amzn.to/2sJ5t4w
Running Scared http://amzn.to/2rq8Nhf
Outlet Saver http://amzn.to/2rqigVK
Right-Angle USB Cable http://amzn.to/2sDdIQl
USB Power Adapter http://amzn.to/2szR7TM
Webcam http://amzn.to/2sDaYCo

THINGIVERSE LINKS:
Cable Loop/Holder https://www.thingiverse.com/thing:934927
Raspberry Pi Mount https://www.thingiverse.com/thing:1205961
Camera Mount https://www.thingiverse.com/thing:2389663
Spool Holder https://www.thingiverse.com/thing:255229

–Be sure to subscribe! http://www.youtube.com/subscription_center?add_user=theairbornesurfer
–Follow on Twitter http://twitter.com/airbornesurfer
–LIVE on Periscope every Wed @ 5pm Pacific http://www.periscope.tv/airbornesurfer
–Everything else is at http://airbornesurfer.com

Tech teardowns, repairs, and reviews; sketches; how-to; games; and lots of other interesting geekery. At least one new video per month! Thanks for watching, and be sure to like, share, and subscribe!

TRASNCRIPT:

1
00:00:00,030 –> 00:00:04,799
hey folks Atari here I’ve been playing

2
00:00:02,790 –> 00:00:05,580
around with this Robo 3d printer for a

3
00:00:04,799 –> 00:00:07,379
while now

4
00:00:05,580 –> 00:00:10,110
and I think I’ve got the hang of it

5
00:00:07,379 –> 00:00:12,660
finally the thing about 3d printing is

6
00:00:10,110 –> 00:00:14,670
it’s very much a hacker minded hobby

7
00:00:12,660 –> 00:00:17,850
there’s a lot of trial and error

8
00:00:14,670 –> 00:00:20,369
involved in the process and most

9
00:00:17,850 –> 00:00:22,710
consumer grade printers do lack a lot of

10
00:00:20,369 –> 00:00:24,960
the out-of-the-box features got some of

11
00:00:22,710 –> 00:00:27,539
the higher-end printers include which

12
00:00:24,960 –> 00:00:30,300
leads people like me to go ahead and

13
00:00:27,539 –> 00:00:32,750
build their own upgrades what I’ve done

14
00:00:30,300 –> 00:00:36,090
here is I’ve installed a Raspberry Pi

15
00:00:32,750 –> 00:00:39,420
with the octoprint software to make a

16
00:00:36,090 –> 00:00:42,719
self-contained Wi-Fi printer and then I

17
00:00:39,420 –> 00:00:45,809
installed a webcam to capture time-lapse

18
00:00:42,719 –> 00:00:48,510
videos of the print process as well as

19
00:00:45,809 –> 00:00:51,449
some LED lighting for better video

20
00:00:48,510 –> 00:00:53,390
capturing and then I’ve you know kind of

21
00:00:51,449 –> 00:00:57,390
rejiggered the cabling and the filament

22
00:00:53,390 –> 00:00:58,559
feeds so that they’re going to move a

23
00:00:57,390 –> 00:01:01,949
little bit better and they don’t be

24
00:00:58,559 –> 00:01:03,629
caught up in may in the works inside it

25
00:01:01,949 –> 00:01:08,280
just makes for a whole lot better

26
00:01:03,629 –> 00:01:11,310
experience so this video is going to

27
00:01:08,280 –> 00:01:16,350
walk you through the process that I use

28
00:01:11,310 –> 00:01:19,320
to install these physical upgrades but I

29
00:01:16,350 –> 00:01:21,659
will have a link in the doobly-doo and

30
00:01:19,320 –> 00:01:26,150
probably up here in the corner a link to

31
00:01:21,659 –> 00:01:30,600
a full how-to article about about

32
00:01:26,150 –> 00:01:33,479
installing and setting up octoprint on

33
00:01:30,600 –> 00:01:35,100
the Raspberry Pi or octopi as its called

34
00:01:33,479 –> 00:01:38,220
I will put a link to that I’ll have a

35
00:01:35,100 –> 00:01:40,680
full write-up on airborne surfer comm so

36
00:01:38,220 –> 00:01:42,720
you can follow that guide there but

37
00:01:40,680 –> 00:01:46,380
again this is going to walk through the

38
00:01:42,720 –> 00:01:48,509
physical installation and with that with

39
00:01:46,380 –> 00:01:50,579
the write-up on the software that should

40
00:01:48,509 –> 00:01:52,680
get you through a pretty much down the

41
00:01:50,579 –> 00:01:54,840
gist of it the first thing I’m going to

42
00:01:52,680 –> 00:01:56,939
fix is the zip tie loop for the cable

43
00:01:54,840 –> 00:01:58,770
loom having a zip tie here has been

44
00:01:56,939 –> 00:02:01,950
holding the Loom a little too rigidly

45
00:01:58,770 –> 00:02:03,930
and has led to a few failed prints I’ve

46
00:02:01,950 –> 00:02:06,210
already cut the zip ties since removing

47
00:02:03,930 –> 00:02:08,640
the hood and now I need to replace the

48
00:02:06,210 –> 00:02:10,500
mounting point for the zip tire I found

49
00:02:08,640 –> 00:02:13,140
a suitable two piece cable loop on

50
00:02:10,500 –> 00:02:15,480
Thingiverse that holds the Loom in

51
00:02:13,140 –> 00:02:18,240
face while being loose enough to allow

52
00:02:15,480 –> 00:02:20,000
some play in the tension remove the two

53
00:02:18,240 –> 00:02:23,459
screws holding the loop mount in place

54
00:02:20,000 –> 00:02:25,740
then replace it with the base of the

55
00:02:23,459 –> 00:02:29,580
two-piece print hang on to the second

56
00:02:25,740 –> 00:02:31,709
piece for later next thing to do is

57
00:02:29,580 –> 00:02:34,500
install some lighting I picked up the

58
00:02:31,709 –> 00:02:37,680
self-adhesive USB powered LED strip from

59
00:02:34,500 –> 00:02:40,530
Amazon and ran it along the interior of

60
00:02:37,680 –> 00:02:42,630
the hood be sure to start with the USB

61
00:02:40,530 –> 00:02:44,790
plug on the slide with the cable well

62
00:02:42,630 –> 00:02:48,239
this is the same side that the loop

63
00:02:44,790 –> 00:02:51,120
mount is installed now before we put the

64
00:02:48,239 –> 00:02:53,459
hood back on go ahead and unplug the USB

65
00:02:51,120 –> 00:02:56,820
cable and the power cable from the

66
00:02:53,459 –> 00:02:59,130
printer place the hood back onto the

67
00:02:56,820 –> 00:03:02,130
base of the printer with the cable loop

68
00:02:59,130 –> 00:03:04,350
on the same side as the well make sure

69
00:03:02,130 –> 00:03:07,170
all the wiring is tucked inside the hood

70
00:03:04,350 –> 00:03:10,170
before pressing down to properly align

71
00:03:07,170 –> 00:03:14,550
the screw holes then screw the hood

72
00:03:10,170 –> 00:03:17,489
securely in place now gently lift the

73
00:03:14,550 –> 00:03:19,440
printer and set it on its side make sure

74
00:03:17,489 –> 00:03:21,810
to hold on to the print cartridge and

75
00:03:19,440 –> 00:03:24,870
abed as they’re likely to slide around

76
00:03:21,810 –> 00:03:26,790
to install the Raspberry Pi we’re going

77
00:03:24,870 –> 00:03:29,190
to need to siphon some electricity from

78
00:03:26,790 –> 00:03:32,340
the printers power supply specifically

79
00:03:29,190 –> 00:03:40,590
from the AC input coming from the switch

80
00:03:32,340 –> 00:03:43,590
on the back of the unit the power supply

81
00:03:40,590 –> 00:03:44,610
on a robo 3d printer is a tough zombie

82
00:03:43,590 –> 00:03:46,769
to remove

83
00:03:44,610 –> 00:03:50,040
there aren’t any screws or anything it’s

84
00:03:46,769 –> 00:03:53,430
just held in the friction very tightly

85
00:03:50,040 –> 00:03:56,190
as you can see taking quite a bit of

86
00:03:53,430 –> 00:03:58,950
effort to remove I found that shifting

87
00:03:56,190 –> 00:04:01,380
it down at an angle back and forth will

88
00:03:58,950 –> 00:04:04,290
garner the quickest results but your

89
00:04:01,380 –> 00:04:06,810
mileage may vary so here are the

90
00:04:04,290 –> 00:04:09,049
terminals these four go into the Arduino

91
00:04:06,810 –> 00:04:13,790
board that controls the printer and

92
00:04:09,049 –> 00:04:19,289
these three are for the AC what dish

93
00:04:13,790 –> 00:04:20,489
blue brown green and yellow OnLive just

94
00:04:19,289 –> 00:04:24,639
get get somebody killed

95
00:04:20,489 –> 00:04:27,039
you see standards exist for a reason

96
00:04:24,639 –> 00:04:29,889
well they exist for many reasons but one

97
00:04:27,039 –> 00:04:33,099
of them is safety international standard

98
00:04:29,889 –> 00:04:35,289
wiring colors are such so that one does

99
00:04:33,099 –> 00:04:37,710
not accidentally connect the wrong

100
00:04:35,289 –> 00:04:41,439
conduct to do the wrong terminal or

101
00:04:37,710 –> 00:04:47,740
worse touch the wrong live conductor

102
00:04:41,439 –> 00:04:50,199
this is wrong this is it’s good right

103
00:04:47,740 –> 00:04:57,370
I mean bed at least the goddamn

104
00:04:50,199 –> 00:04:59,770
terminals are clearly marked anyway

105
00:04:57,370 –> 00:05:02,919
we’re going to need to tap into these

106
00:04:59,770 –> 00:05:05,139
leads to direct power to a standard 110

107
00:05:02,919 –> 00:05:07,180
volt outlet so that we can use an

108
00:05:05,139 –> 00:05:08,379
off-the-shelf power converter to power

109
00:05:07,180 –> 00:05:10,870
the Raspberry Pi

110
00:05:08,379 –> 00:05:14,169
we’ll start by loosening the terminal

111
00:05:10,870 –> 00:05:16,629
screws and removing the leads I picked

112
00:05:14,169 –> 00:05:19,210
up this outlet saver at micro Center for

113
00:05:16,629 –> 00:05:21,310
a couple of dollars essentially it’s a

114
00:05:19,210 –> 00:05:23,919
10 inch long grounded extension cord

115
00:05:21,310 –> 00:05:26,770
take a pair of scissors and cut off the

116
00:05:23,919 –> 00:05:29,589
plug-in then strip away the outer casing

117
00:05:26,770 –> 00:05:32,740
leaving just the outlet end and the

118
00:05:29,589 –> 00:05:35,949
exposed inner wiring at least these

119
00:05:32,740 –> 00:05:37,779
wires are the proper colors so now we

120
00:05:35,949 –> 00:05:40,569
just need to strip the end of the

121
00:05:37,779 –> 00:05:43,330
insulation off of each of the wires so

122
00:05:40,569 –> 00:05:45,940
we can hook them up to the terminal now

123
00:05:43,330 –> 00:05:48,969
remember kids ground is green like grass

124
00:05:45,940 –> 00:05:51,960
on the ground white is neutral because

125
00:05:48,969 –> 00:05:55,719
it’s the neutral color and black is live

126
00:05:51,960 –> 00:05:58,060
because black lives matter anyway

127
00:05:55,719 –> 00:06:01,270
so we reinsert the leads from the switch

128
00:05:58,060 –> 00:06:04,240
into the proper terminal then insert the

129
00:06:01,270 –> 00:06:06,810
new leads from the extension cord into

130
00:06:04,240 –> 00:06:10,599
the appropriate terminals as well and

131
00:06:06,810 –> 00:06:13,270
tighten the retaining screw then simply

132
00:06:10,599 –> 00:06:19,629
reposition the power supply back inside

133
00:06:13,270 –> 00:06:21,789
its retainer with a good shove now we’re

134
00:06:19,629 –> 00:06:23,770
going to need to run a USB cable to

135
00:06:21,789 –> 00:06:26,259
connect the Arduino to the Raspberry Pi

136
00:06:23,770 –> 00:06:28,900
and because the Arduino is mounted so

137
00:06:26,259 –> 00:06:31,330
close to the edge of the base we’re

138
00:06:28,900 –> 00:06:33,789
going to use this right angle USB cable

139
00:06:31,330 –> 00:06:36,279
to make the connection now even with the

140
00:06:33,789 –> 00:06:38,409
low profile of the right angle cable

141
00:06:36,279 –> 00:06:41,469
though we’re going to need to

142
00:06:38,409 –> 00:06:43,569
move the Arduino to plug in the cable so

143
00:06:41,469 –> 00:06:46,179
just remove these three mounting screws

144
00:06:43,569 –> 00:06:48,669
from the Arduino and carefully plug in

145
00:06:46,179 –> 00:06:51,309
the USB cable you can use the existing

146
00:06:48,669 –> 00:06:54,219
wires to hold the new USB cable in place

147
00:06:51,309 –> 00:06:57,009
just be careful not to pull any of the

148
00:06:54,219 –> 00:06:58,959
wires from the Arduino screw the Arduino

149
00:06:57,009 –> 00:06:59,619
back into place and you’re done with

150
00:06:58,959 –> 00:07:03,279
step 2

151
00:06:59,619 –> 00:07:05,769
I found the simple mouth for a Raspberry

152
00:07:03,279 –> 00:07:08,379
Pi on Thingiverse but I also printed if

153
00:07:05,769 –> 00:07:10,959
you get the hole size right you can use

154
00:07:08,379 –> 00:07:12,610
screws to mount the pie in place but I’m

155
00:07:10,959 –> 00:07:15,339
just going to use glue as it’s a little

156
00:07:12,610 –> 00:07:17,439
easier than drilling out the hole apply

157
00:07:15,339 –> 00:07:20,349
the glue to the mount and press the

158
00:07:17,439 –> 00:07:22,419
Raspberry Pi board into place some glue

159
00:07:20,349 –> 00:07:24,279
should come through the holes in the pie

160
00:07:22,419 –> 00:07:26,409
and mushroom over to provide a pretty

161
00:07:24,279 –> 00:07:29,919
good hole clamp some parts together

162
00:07:26,409 –> 00:07:32,110
until the glue sets apply glue along the

163
00:07:29,919 –> 00:07:35,050
perimeter of the mouth and press it into

164
00:07:32,110 –> 00:07:36,669
place on the bottom of the printer make

165
00:07:35,050 –> 00:07:39,779
sure to hold it tightly against the base

166
00:07:36,669 –> 00:07:42,579
of the printer until they do the sex

167
00:07:39,779 –> 00:07:45,789
finally plug the printer into one of the

168
00:07:42,579 –> 00:07:48,279
USB ports on the pie plug one end of a

169
00:07:45,789 –> 00:07:50,529
USB to micro USB cable into the power

170
00:07:48,279 –> 00:07:52,659
port on the Raspberry Pi and the other

171
00:07:50,529 –> 00:07:54,999
end into a wall wart power converter I

172
00:07:52,659 –> 00:07:57,669
think this one up at Tashi station for

173
00:07:54,999 –> 00:07:59,860
about 5 imperial credits just make sure

174
00:07:57,669 –> 00:08:02,709
it’s rated for at least 5 volts and 1

175
00:07:59,860 –> 00:08:04,689
ampere plug your power converter into

176
00:08:02,709 –> 00:08:07,239
your hacked up power outlet from earlier

177
00:08:04,689 –> 00:08:10,839
and now your pie is powered on by the

178
00:08:07,239 –> 00:08:12,759
main switch on the printer again you can

179
00:08:10,839 –> 00:08:16,719
use the existing wiring to hold your new

180
00:08:12,759 –> 00:08:18,579
wiring in place I picked up a short USB

181
00:08:16,719 –> 00:08:20,259
extension cable to connect the lighting

182
00:08:18,579 –> 00:08:24,369
to the PI as well so I just need to

183
00:08:20,259 –> 00:08:26,259
connect that the last USB connection is

184
00:08:24,369 –> 00:08:28,479
made for the webcam which will record

185
00:08:26,259 –> 00:08:30,699
our time-lapse videos for this i’ll

186
00:08:28,479 –> 00:08:32,589
thread the USB cable from the front of

187
00:08:30,699 –> 00:08:34,659
the printer through the cable well to

188
00:08:32,589 –> 00:08:37,350
the underside of the printer and connect

189
00:08:34,659 –> 00:08:40,120
it to the Raspberry Pi

190
00:08:37,350 –> 00:08:41,950
before setting the printer up light go

191
00:08:40,120 –> 00:08:44,500
ahead and insert the cable loom in place

192
00:08:41,950 –> 00:08:46,690
inside the loop installed earlier and

193
00:08:44,500 –> 00:08:51,220
enclose it with the locking piece then

194
00:08:46,690 –> 00:08:52,900
carefully write the printer this is a

195
00:08:51,220 –> 00:08:54,670
widget that I designed myself and

196
00:08:52,900 –> 00:08:56,980
Tinkercad and I’ll put a link to it in

197
00:08:54,670 –> 00:08:58,900
the doobly-do what it does is it clamps

198
00:08:56,980 –> 00:09:01,270
onto the edge of the print bed and

199
00:08:58,900 –> 00:09:03,970
allows you to mount a clamp style webcam

200
00:09:01,270 –> 00:09:06,130
level with the print bed so you can

201
00:09:03,970 –> 00:09:09,490
capture time-lapse video that stabilize

202
00:09:06,130 –> 00:09:11,860
to the y-axis stabilizing one axis is

203
00:09:09,490 –> 00:09:13,480
nice because otherwise motion gets

204
00:09:11,860 –> 00:09:17,410
really messy and you can’t really see

205
00:09:13,480 –> 00:09:19,180
much detail in your printing lastly

206
00:09:17,410 –> 00:09:20,800
we’re going to turn the printer around

207
00:09:19,180 –> 00:09:23,410
to the back so I can install the new

208
00:09:20,800 –> 00:09:25,180
spool holder that I printed this is a

209
00:09:23,410 –> 00:09:27,940
replacement for the stock holder that

210
00:09:25,180 –> 00:09:29,590
hangs off the side of the hood this one

211
00:09:27,940 –> 00:09:31,720
keeps the footprint of the printer a

212
00:09:29,590 –> 00:09:33,700
little smaller and keeps the filament

213
00:09:31,720 –> 00:09:35,620
closer to the center axis of the printer

214
00:09:33,700 –> 00:09:38,470
which helps keep the feed steady

215
00:09:35,620 –> 00:09:40,060
preventing jams and tangles and it just

216
00:09:38,470 –> 00:09:43,290
grips onto the side of the hood and

217
00:09:40,060 –> 00:09:43,290
slides down to lock in place

218
00:09:43,950 –> 00:09:48,580
now if you’ll install these upgrades as

219
00:09:46,690 –> 00:09:50,530
soon as possible after setting up your

220
00:09:48,580 –> 00:09:51,730
logo through the printer you’ll find

221
00:09:50,530 –> 00:09:55,030
that you’re going to get a much better

222
00:09:51,730 –> 00:09:57,370
and much more consistent quality in your

223
00:09:55,030 –> 00:10:01,540
prints and you’ll have a lot fewer

224
00:09:57,370 –> 00:10:03,250
headaches along the way so anyway thanks

225
00:10:01,540 –> 00:10:05,320
for watching and if you like this video

226
00:10:03,250 –> 00:10:07,690
give it a thumbs up and click that

227
00:10:05,320 –> 00:10:10,060
little subscribe button and be sure to

228
00:10:07,690 –> 00:10:12,940
share it with your friends and in the

229
00:10:10,060 –> 00:10:15,220
meantime uh what would you like to see

230
00:10:12,940 –> 00:10:18,040
me 3d print leave an answer in the

231
00:10:15,220 –> 00:10:20,280
comments below until next time Tallyho

232
00:10:18,040 –> 00:10:20,280
y’all

233
00:10:32,590 –> 00:10:38,659
[Music]

 

How To Install OctoPi (Raspberry Pi OctoPrint)

Having a 3D printer at your disposal is pretty amazing, but it can be a pain when you have to keep the printer tethered to your working computer for hours (or even days) while it runs! I was looking for a simple solution to drive my printer while I used my laptop for other purposes (like going to work during the week) when I came across OctoPrint, an open-source 3D printer web interface for controlling and monitoring the printer from a remote computer. The software essentially creates a running web server for the printer and takes the place of printing suites like MatterControl or Repetier, so it does require running on a machine connected to the printer via USB. If you have an old PC gathering dust, you can easily set it up and have a permanent print station. I, however, don’t have the luxury of a lot of space, so I wanted a more portable option that I could pull out when I needed to use it and easily put away. For this, I chose the Raspberry Pi as it is small enough to easily fit into the printer’s form factor, doesn’t require much electricity to run, and has built-in WiFi compatibility. The OctoPrint software even comes as a complete Linux distro optimized for Raspberry Pi called OctoPi.

Out of the box, OctoPi incorporates the LAMP stack for web hosting, a complete OctoPrint installation (including dependencies) for controlling the 3D printer, the mjpg-streamer package for streaming timelapse videos of the print process, and CuraEngine for slicing. This last item, however, is really moot because of the anemic computing power of the Raspberry Pi. I prefer to slice models on my working computer then transfer over the network to OctoPi for printing.

OctoPi is a pretty simple setup with a lot of really good documentation both at the OctoPrint.org site and their GitHub page. To start, make sure you have Etcher installed and simply download the latest stable version from http://octopi.octoprint.org/download (Be sure to grab the md5 file to verify the download as well!). Unzip the downloaded image and burn it to your SD card using Etcher like you would any other RPi image.

OctoPi network setup
If you don’t know how to manage these settings, you might think twice before diving into 3D Printing. Just a thought.

Open the newly burnt SD card as a removable drive in your computer’s file explorer. In the root folder of the SD card, use a text editor to open octopi-network.txt and edit the file as necessary to match your network configuration. Don’t forget to delete the # at the beginning of the appropriate lines or OctoPi will not connect to the network!

Eject the SD card from your computer, pop it into the Raspberry Pi, run a USB cable from the Pi to the printer, and turn on the Pi by plugging it into a power supply. Give the Pi a minute to boot up, and SSH into it from your main computer. The Pi will be located on the network as octopi.local (or an IP address assigned by the router). As usual, the default username is pi and the default password is raspberry.

Change the password using the passwd command, then close your SSH session.

Open a browser on your main computer and point it to octopi.local (or the assigned IP address). The OctoPrint interface will open with the “First-Run Wizard” and prompt you to set up access controls such as username and password. This is specific to OctoPrint and independent of the username and password used to access the Pi via SSH. If you don’t plan on having your printer exposed to the Internet or having anyone else connecting to your network, you may disable access control. I keep it active just in case, so disable at your own risk!

Reboot OctoPi through the menu at the top right of the screen, and you will be all set to print! If you need more help, check out the README section of the GitHub page or drop a comment below!

AvE Shop Ruler Assembly and Review

I finally got my AvE shop ruler direct from the Empire of Dirt in Western Bring Cash Canuckistan! Here, I’ll take a few minutes to walk through the requisite soldering what for assembling and at the end of the vijayo I’ll giver a proper-type review!

TRANSCRIPT:

1
00:00:10,720 –> 00:00:24,430
If the women don’t find you handsome, they should at least find you handy!

2
00:00:24,430 –> 00:00:35,670
Aha! I think this is my ruler!

3
00:00:35,670 –> 00:00:43,739
Sealed in a mayonnaise jar underneath Funk

4
00:00:43,739 –> 00:00:47,309
and Wagnall’s front porch for the past 24 hours

5
00:00:47,309 –> 00:00:53,549
This is the ruler! Aha! It’s here!

6
00:00:53,549 –> 00:00:54,809
“Hello and thank you for picking up a ruler

7
00:00:54,809 –> 00:00:56,789
here’s a link to instruction on how to

8
00:00:56,789 –> 00:00:59,670
assemble your flashlight. In addition to

9
00:00:59,670 –> 00:01:02,640
bolt gauge, I want to add some info that didn’t

10
00:01:02,640 –> 00:01:05,880
fit on the ruler…

11
00:01:18,270 –> 00:01:20,640
so I’ve got all my parts here I’ve got

12
00:01:20,640 –> 00:01:26,009
ruler base battery compartment a little

13
00:01:26,009 –> 00:01:30,810
magnet this thing momentary switch and

14
00:01:30,810 –> 00:01:32,789
of course I’ve got my solder, my iron

15
00:01:32,789 –> 00:01:35,970
here I think I’m okay just I feel like

16
00:01:35,970 –> 00:01:40,289
there’s something missing something ah I

17
00:01:40,289 –> 00:01:45,300
know exactly

18
00:01:45,300 –> 00:01:50,270
it’s Saturday in Orange County

19
00:02:00,850 –> 00:02:18,410
make way for prince Ali

20
00:02:18,410 –> 00:02:25,040
okay so that’s better that’s much better so

21
00:02:25,040 –> 00:02:29,330
we’ve got all of our parts here

22
00:02:29,330 –> 00:02:32,510
and wait on the soldering iron to get hot

23
00:02:32,510 –> 00:02:44,000
there you go yeah all right so so first

24
00:02:44,000 –> 00:02:45,770
things first let’s do the tiniest component

25
00:02:45,770 –> 00:02:49,220
first this is our led in this nice

26
00:02:49,220 –> 00:02:52,190
little protective package here i can get

27
00:02:52,190 –> 00:02:53,720
it open this will be a small miracle

28
00:02:53,720 –> 00:03:01,840
there Oh open now see there

29
00:03:02,700 –> 00:03:07,530
nothing focus anyway so the little T a

30
00:03:11,099 –> 00:03:14,340
it’s essentially we want to say that

31
00:03:14,340 –> 00:03:16,230
we’re going to point it in the same

32
00:03:16,230 –> 00:03:18,750
direction as the little diode icon is

33
00:03:18,750 –> 00:03:20,190
pointing that’s how we’re going to line

34
00:03:20,190 –> 00:03:24,180
it up we’re going to take our little guy

35
00:03:40,010 –> 00:03:52,640
at least one side’s on there pretty good looks

36
00:03:52,640 –> 00:03:53,720
like it’s on there pretty good hopefully

37
00:03:53,720 –> 00:03:57,739
feel like it’s on there pretty good I’m

38
00:03:57,739 –> 00:04:00,440
twisting you’re looking all right that’s

39
00:04:00,440 –> 00:04:03,650
one down all right now let’s do the

40
00:04:03,650 –> 00:04:10,099
better let’s do the switch here all

41
00:04:10,099 –> 00:04:13,760
right just about make sure it’s good

42
00:04:13,760 –> 00:04:19,910
squared when you have too much caffeine

43
00:04:19,910 –> 00:04:22,699
in your system try to do some precision

44
00:04:22,699 –> 00:04:29,750
it’s got a little bit of shakes that’s

45
00:04:29,750 –> 00:04:45,379
really fine work

46
00:04:58,160 –> 00:05:00,500
looks like it’s on there pretty good all

47
00:05:00,500 –> 00:05:10,280
right then get our battery deal okay so

48
00:05:10,280 –> 00:05:19,099
battery assuming goes on like this go

49
00:05:19,099 –> 00:05:21,889
upside down I wouldn’t go upside down

50
00:05:21,889 –> 00:05:24,280
would it

51
00:05:31,120 –> 00:05:34,540
this little guy gets hot. why am i doing this without gloves?

52
00:05:34,540 –> 00:05:39,910
one thing’s for certain I gotta bend

53
00:05:39,910 –> 00:05:44,620
these guys back in place these little contact

54
00:05:44,620 –> 00:05:48,669
pads bent out of shape not sitting right

55
00:05:48,669 –> 00:05:53,020
break out the good stuff a little bit of

56
00:05:53,020 –> 00:06:00,520
this keep it yeah there you go big ol

57
00:06:00,520 –> 00:06:03,120
blob on there

58
00:06:12,700 –> 00:06:15,610
fantastic look how much faster that

59
00:06:15,610 –> 00:06:21,940
works that’s all we needed the right

60
00:06:21,940 –> 00:06:31,270
tool for the job okay there’s I just got

61
00:06:31,270 –> 00:06:33,160
to grab a glue gun and glue my magnet

62
00:06:33,160 –> 00:06:34,780
in place and I think we’re gonna be good

63
00:06:34,780 –> 00:06:37,810
hope we’re going to be good anyway I’m

64
00:06:37,810 –> 00:06:50,680
gonna find a battery

65
00:06:50,680 –> 00:07:00,190
easier said than done folks

66
00:07:00,330 –> 00:07:18,389
stay there all right here we go all

67
00:07:18,389 –> 00:07:20,550
right then we just gotta put a battery in her and

68
00:07:20,550 –> 00:07:23,699
see what happens okay so I ran down to

69
00:07:23,699 –> 00:07:25,169
the radio shack that’s going out of

70
00:07:25,169 –> 00:07:27,300
business and I grabbed a little button

71
00:07:27,300 –> 00:07:29,789
cell this is a twenty thirty two button cell

72
00:07:29,789 –> 00:07:32,699
so we will see what this thing does now

73
00:07:32,699 –> 00:07:36,569
right what’s that night and they’re just

74
00:07:36,569 –> 00:07:40,860
just so we’re working fun make sure

75
00:07:50,460 –> 00:07:57,120
works a little light going ok so this is

76
00:07:57,120 –> 00:07:58,770
the kind of a cool little thing so it’s

77
00:07:58,770 –> 00:08:01,439
great if you are new to soldering if

78
00:08:01,439 –> 00:08:04,229
you’re not great at soldering and I’m

79
00:08:04,229 –> 00:08:07,979
not a master of it so so it’s great if

80
00:08:07,979 –> 00:08:10,409
you’re not if you need practice at

81
00:08:10,409 –> 00:08:13,680
soldering this is a great little cheapo

82
00:08:13,680 –> 00:08:16,259
fun little thing to do especially

83
00:08:16,259 –> 00:08:17,759
with the surface mount components cuz

84
00:08:17,759 –> 00:08:20,660
that’s a base again those are hard

85
00:08:20,660 –> 00:08:24,320
anyway so there you go you’ve got got

86
00:08:24,320 –> 00:08:26,600
your PCB material and a little fun

87
00:08:26,600 –> 00:08:30,350
little printing things on here so the

88
00:08:30,350 –> 00:08:34,610
millimeter scale let’s just go ahead and

89
00:08:34,610 –> 00:08:38,150
check to accuracy here not that I doubt

90
00:08:38,150 –> 00:08:45,020
but now this is of course my

91
00:08:45,020 –> 00:08:47,720
horror fright harbor freight

92
00:08:47,720 –> 00:08:50,720
caliper here digital calipers I mean

93
00:08:50,720 –> 00:08:53,150
it’s not a hundred percent accurate so

94
00:08:53,150 –> 00:08:54,920
it’s going to get a pretty darn close

95
00:08:54,920 –> 00:09:07,190
151 10 meters right there that is right

96
00:09:07,190 –> 00:09:09,850
on the line

97
00:09:09,850 –> 00:09:13,329
15 centimeter so pretty darn accurate

98
00:09:13,329 –> 00:09:16,600
there good job and then on the back we

99
00:09:16,600 –> 00:09:23,139
have inches here in 16 we have inches

100
00:09:23,139 –> 00:09:25,540
again in 32 so we’ve got both

101
00:09:25,540 –> 00:09:27,430
scales there and of course you got your

102
00:09:27,430 –> 00:09:29,319
bolt hole scales which you can

103
00:09:29,319 –> 00:09:33,339
cross-reference with the tables that he

104
00:09:33,339 –> 00:09:36,910
was so kind to send along and we have

105
00:09:36,910 –> 00:09:39,699
our gap width in thousands and see what

106
00:09:39,699 –> 00:09:47,079
we got here inches we’re going to go

107
00:09:47,079 –> 00:09:50,500
down hundreds on the so I guess that’s

108
00:09:50,500 –> 00:09:53,259
kind of weird but I low multiples of 10

109
00:09:53,259 –> 00:09:56,829
I can be more free time 10,000 would be

110
00:09:56,829 –> 00:10:03,480
point one in so it’s pretty accurate

111
00:10:03,480 –> 00:10:09,930
we can do 30 let’s get 33 inch and looks

112
00:10:09,930 –> 00:10:16,889
pretty accurate and 44 in people pretty

113
00:10:16,889 –> 00:10:19,470
accurate there and then on the side of

114
00:10:19,470 –> 00:10:21,600
course we have the more vernacular

115
00:10:21,600 –> 00:10:24,960
measurements here

116
00:10:24,960 –> 00:10:28,470
mediterranean and from experience i can

117
00:10:28,470 –> 00:10:32,550
know you that yes these are accurate hey

118
00:10:32,550 –> 00:10:34,170
and then of course there’s a little

119
00:10:34,170 –> 00:10:40,110
magnet here there it is yeah pretty

120
00:10:40,110 –> 00:10:45,060
strong neodymium magnet there so that’s

121
00:10:45,060 –> 00:10:49,110
really it that is AvE’s shop ruler

122
00:10:49,110 –> 00:10:51,870
version 1 point 0 and the fun little toy

123
00:10:51,870 –> 00:10:53,670
and it’s something I’m definitely going

124
00:10:53,670 –> 00:10:57,450
to keep on my desk and so that’s a

125
00:10:57,450 –> 00:11:00,570
that’s pretty much it you know go and

126
00:11:00,570 –> 00:11:03,210
pick one up and for his channel and if

127
00:11:03,210 –> 00:11:04,950
you enjoyed this video be sure to click

128
00:11:04,950 –> 00:11:06,330
that like button share it with your

129
00:11:06,330 –> 00:11:07,560
friends and don’t forget to subscribe

130
00:11:07,560 –> 00:11:10,260
for more interesting stuff meanwhile

131
00:11:10,260 –> 00:11:24,000
until next time